
 1 

Analysis of directional wave spectrum from simulated High Frequency 

Radar Sea echo 
 

Duy-Toan Dao
1
, Hwa Chien*

1
, Kang-Hung Yang

2 

1 
Institute of Hydrological and Oceanic Sciences, National Central University, Taiwan (R.O.C.) 

2 
Department of Industrial and Systems Engineering, Chung Yuan Christian University, Taiwan (R.O.C) 

 

Abstract 

 
The Central Weather Bureau (CWB) schedules to install three antenna array radar stations at northern islands 

of Taiwan for monitoring wave parameters, including directional ocean wave spectrum, significant wave height 

and period for the northern Taiwan Strait in 2019. Such systems use the beam-forming technique (BF) to acquire 

azimuthal information and can obtain more accurate 2nd order peaks in the Doppler-Range spectra, and thus makes 

it possible to provide the directional ocean wave spectral information. In present study, we implement the 

numerical simulations of the Doppler-Range spectra from bistatic HF Radar sea-echo based on the Barrick’s 

equation (1972) and also the theory of Gill and Walsh (2001). The results are inter-compared with respect to the 

given directional wave spectrum and input parameters such as U10 and wind direction. The results show that the 

shape of the 2
nd

 order Doppler-Range spectra can be influenced by the width of the 1
st
 order peak. This simulation 

will be provided as a numerical tool to test and validate the inverse algorithms which estimate the wave spectrum 

from DR spectrum.  
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1. Introduction 
 

    The High frequency (HF) surface wave radar is 

currently the most common and widely applied 

land-based remote sensing technology of the ocean 

surface current, wave and wind mapping. Over the 

developments of four decades, this technique has been 

recognized as a robust tool in the monitoring of the 

coastal environment [9]. Two major receiving antenna 

types were adopted in the HF radar systems to determine 

the azimuthal directions of the backscattered signals, e.q. 

the cross-loop and antenna array. The former was used in 

the HF-CODAR system, which is selected by the Taiwan 

Ocean Research Institute (TORI) to be the main coastal 

radar systems around Taiwan island for surface current 

mapping. Nineteen HF CODAR systems along the 

coastline have been setup since 2009 and currently are in 

operational mode. The later features better accuracy of 

the data in-terms of S/N ratio compared to cross-loop 

type system, and thus can be used to give better resolved 

2
nd

 order information for wave field estimation. In order 

to fulfill the demands of surface wave monitoring for 

safety navigation purposes, the Central Weather Bureau 

(CWB) schedules to install three antenna array radar 

stations at the northern islands of Taiwan for monitoring 

wave parameters. It is highly needed to develop the 

methods for estimation of wave spectrum and parameters 

from antenna array signals. This study is the first step of 

the self-developing wave spectrum estimator from 

antenna array system. In present paper, we implement 

the forward numerical simulation of the Doppler-Range 

spectrum from given wave and wind fields. The 

fundamental theories were reviewed and introduced in 

this paper. 

  

    Two theories introduced in this paper are Barrick 

(1972) and Walsh & Gill (2001). Based on the 

investigation of the Bragg scattering mechanism by 

Crombie [1], Barrick [2] first successfully derived the 

equation described the relationship between the 

characteristic of monostatic radar cross section (RCS) 

and sea state parameter including current and directional 

wave spectrum. In 2000, Walsh and Gill [5] proposed a 

new analysis that was based upon a generalized function 

theory [15] and focused on the scattering electric field 

from the time-varying, good conducting ocean surface 

and involves a pulse dipole, and applied for the bistatic 

case. The comparison of two models was implemented 

by Walsh, and Gill [5]. Now, the bistatic model is not 

only applied to the new system of antenna array radar on 

the Ground but also to the system on a floating platform 

[14]. We repeat the comparisons in this study, too. 

 

    In order to retrieve the directional wave spectrum of 

the ocean surface, a number of methods have been 

developed based on the Barrick's equation for monostatic 

cases such as Wyatt [17], Howell and Walsh [11], 

Hashimoto [8]. In bistatic case, the first alternate analysis 

was implemented by Gill et. al. [6] based on the earlier 

work of Howell and Walsh [11]. In addition, Wyatt has 

published a method for processing data of antenna array 

[18]. It is the next step to implement those methods.  

 



 2 

    In this article, we first explained the different 

mechanism of Barrick’s equation [2] and Walsh and 

Gill’s approach [4]. Then, we describe step-by-step the 

simulation of the Doppler-range spectra of RCS of HF 

radar sea-echo data based on the approach of Gill and 

Walsh [4] with given directional wave spectrum, and 

presented in section 3. Finally, simulated results of two 

models will be compared and discussed in section 4. 

  

2. Two Orders of Radar Cross Section 
 

    In the High frequency band, the sea surface can be 

seen as a slightly rough surface, the backscatter of HF 

radar signal from the sea surface can be analyzed based 

on the perturbation theory [4]. In the derivation, the 

ocean is first assumed to be in deep-water region and 

unbounded of the surface. Secondly, it provides high 

conductivity of sea water and less diffraction propagation 

attenuation of vertical polarization HF radio waves. In 

another word, the sea surface is considered as an ideal 

conductive surface, therefore the backscatter coefficients 

of vertical polarization can be deduced by the 

perturbation method. The vertical polarization part 

should be focused because the horizontally polarized 

component of scattering from the sea is several orders of 

magnitude lower than the vertical component [2].  

 

    The radar cross section (RCS) from the ocean 

surface, which based on the theory of E-M scattering 

from a rough surface, were developed using two methods 

i.e. the perturbation method and the Kirchhoff method. 

Typically, the RCS of HF radar sea-echo data is defined 

as the combination of the first-order (σ1) and higher 

order (the second order, σ2) spectra of Doppler-Range 

spectra. In which, the first-order cross section represents 

the interaction between radio waves and ocean waves 

having a wavelength one-half of the incidence E-M 

waves based on the theory of Resonance Bragg 

scattering [3], [4]. These peaks are related to ocean 

waves propagating outward or inward the radar site 

along the direction of radar looking. The second and 

higher-orders represent the double bounce effects, which  

is the interactions of radio wave with pairs or more of the 

ocean waves. It implies that the shape of ocean wave 

spectrum dominates the 2
nd

 order Dopper-Range spectra. 

In addition, the nature of the scattered signal also 

depends on the radar operating frequency, beam width 

polarization and the type of configuration (monostatic or 

bistatic) [4]. 
 

    Based on the boundary perturbation theory of Rice, 

Barrick firstly proposed the first-order of monostatic 

cross section for plane wave incidence casts the Bragg 

peaks as weighted delta functions [1]. After that, he 

extended that theory to the second-order in an attempt to 

investigate and explain the higher-order observed signals 

[2]. He also found out two contributions to this echo: the 

contribution of the hydrodynamic component due to the 

small nonlinear terms in the boundary conditions at the 

freeway water surface, and the contribution of the 

electromagnetic component due to the previously 

neglected high-order term of the boundary perturbational 

scatter theory [2]. The equations of two orders 

monostatic cross section are presented as: 
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In equation (1), m2 = ±1 denotes the sign of the Doppler 

shift,    is the vector of radio waves, S(.) is the ocean 

wave spectrum, the Bragg frequency     √    , 

 ( ) is the delta function constraint. In equation (2),    

and    are two ocean wave vectors of magnitude k1, k2 

and direction         respectively on the coordinate p-q 

plane [13],   is the coupling coefficient that is the sum 

of the hydrodynamic term (  )  and electromagnetic 

term (   ). According to the derivation of Barrick, two 

coupling coefficients are defined as [2]: 
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where,   is the normalized surface impedance value, 

and given by               . The calculation and 

interpretation of monostatic cross section were 

implemented by Lipa and Barrick [13]. 

 

    In 1980, Walsh [15] introduced a new analysis for 

radio scattering from rough surfaces based on the 

generalized function theory. His work focused on the 

scattered electric field from a random time-varying, high 

conductivity of the ocean surface and relates a pulse 

dipole source that leads to the use of the sampling 

function, instead of the Dirac delta function in the 

equation of radar cross sections. After that, Gill and 

Walsh [5] extended this analysis to include the bistatic 

case. Figure 1 described the bistatic scattering geometry 

for a single patch from the ocean surface, which is 

remote from Transmitter (TX) and Receiver (RX).  

 

    Based on the work of Walsh [15], Gill [4], Gill and 

Walsh [5], the scattered electric field from time-varying 

ocean surface is defined as [5]: 

   (  )  (  )  (  )                                   ( )   
In equation (5), (  )  is the zero-order term that 

represents the E-M wave propagation over a smooth 

plane surface. (  )  is the first-order backscatter 

electric field, which is the sum of a single scatter of 

incident radiation from the first-order surface waves and 

a single scatter from a second-order surface component 

[5]. However, the second component of (  )  will be 

appropriately addressed in the second-order terms from 

double scattering. (  )  is the second-order backscatter 

electric field that is combined with three components: the 

second-order patch scatter filed components, (  )  , the 
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second-order filed has a single scatter near the 

transmitter and another in patch scatter, (  )  , the 

second-order filed has a single scatter in patch scatter 

and another near the receiver (  )    Whereas higher 

orders are neglected because their contribution is less 

important to the received E-field [5]. Therefore, the total 

received electric field is given as: 

   (  )   (  )   (  )   (  )                      ( ) 
 

     In the next step, Gill (2001) determined the 

Doppler Power Spectral Density (PSD) of the received 

electric field based on a few statistical analyses as the 

ocean surface is statistical stationary and homogeneous 

during a single measurement, and its first-order Fourier 

coefficients are normally distribution. Given these 

assumptions, the autocorrelation of a random process 

will be a function only of the time shift. Therefore, it is 

convenient to express the autocorrelation of the field as 

the work in [5]. Finally, the HF bistatic cross sections 

from the ocean surface were derived from the Doppler 

PSD. 

 

    The first-order bistatic cross section, which 

associated with the first-order backscatter electric field of 

a single scatter of incident radiation, is presented as: 

   (  )   
    

 ∑  (  )
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    )]    ( ) 

where   is the wave vector of the ocean wave spectrum 

S(.), g is the gravity acceleration, k0 is the wavenumber 

of radio signals, Sa(x) = sin[x]/x is the sampling function, 

    is the patch width,   is the bistatic angle. It is clear 

that σ11(ωd) is a maximum at           and the 

Bragg peak are located at the Bragg frequency 

    √         that has little different in compared 

with the same component in (1). Thus, equation (7) will 

reduce to similarly (1) if the patch width becomes 

infinite. However, for the finite of patch width, the 

first-order interaction becomes continuum that indicated 

the different of this model in compared with the earlier 

version [1]. 

 

    The second-order cross section associated with the 

second-order backscatter electric field is presented [4], 

[5].   (  )      (  )      (  )      (  )       ( )  

where,    (  )  is the second-order “patch scatter” 

cross section of two scatters occur on the remote 

elliptical scattering patch.    (  ) is the second-order 

cross section for the case of one scatter near TX is 

followed by another on the remote patch, and    (  ) 
is the second-order cross section for the case of one 

scatter on the remote patch is followed by another near 

Rx. It is clear that two last terms in (8) neglected in the 

Barrick’s derivation. Fortunately, Gill and Walsh [5] 

pointed out that the second-order “patch scatter” cross 

section is main contributed to the total value of the 

second-order radar cross section, and it is presented as 

[5]: 
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where   = (          ) with the direction is the same 

with the direction of ellipse normal,        as in 

Figure 1, and   is the sum of   and    as in Figure 

2a,b, the symmetrised coupling coefficient is defined by 

   , and given as      |       |,     and    are the 

symmetrised electromagnetic and the hydrodynamic 

coupling coefficients respectively, and are defined as [6], 

[4]: 
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where       √    and       √    . Gill et. al., 

[6] suggested that there is only the hydrodynamic term 

which is dominant in the interest region of 

Doppler-Range spectral of RCS. Meanwhile, Huang et. 

al. [6] only considered the hydrodynamic coupling 

coefficient in the inverse problem. Equation (9) can 

reduce to similarly (2) when applying the Lathi’s 

relationship [11] which will be presented in next section.  

 

Figure 1. The general geometry of Bistatic Radar.  ⃗⃗  

and  ⃗⃗  are the normal and tangent vector of the 

scattering ellipse.   ⃗⃗⃗⃗  and   ⃗⃗⃗⃗  are the vector of    and 

   that associate to the distant from Tx to scattering 

point and scattering point to RX respectively  

 

   It is seen that there are several differences between 

the second-order equation of Barrick and those of Gill 

and Walsh’s. Firstly, the existence of Sa(.) function 

associated with the pulse dipole source which may 

provides noise from system. Secondly, the direction of 

the normal vector of the scattering ellipse is changed an 

amount of ϕ in compared with the direction of incident 

waves from TX. Finally, the value of patch width and its 

effects to the width of major peaks from the Sa
2
(.) 

function.   
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   The second-order cross section component,    (  ), 
is presented as [5]: 
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where     is the electromagnetic coupling coefficient 

that provides the main different between (9) and (12). As 

Gill mentioned [4], the main contribution of wave 

number    in (12) is, due to the Sa(.) function, confined 

to the small value of        . The value of    (  ) 
is much smaller than    (  ), and its reasons will be 

discussed in section 3. 

    The last second-order cross section component, 

   (  ), is presented as [5]: 

   (  )   
    

 ∑ ∑ ∫ ∫ ∫  (    )
 

 

 

  

 

           
 

                     (    )|    |
 
  
      

                                
 [
   
 
(
  
    

    )] 

                     (     √      √   ) 

                                                       (  ) 

where    is the electromagnetic coupling coefficient 

that has replaced     in (12). As the same above, the 

value of    (  ) is much smaller in compared with 

   (  ).  

    

3. Calculation and interpretation of Bistatic 

Cross Sections 
     

    From the expression of Gill [4], the first-order cross 

section in equation (9) is replaced to here as: 

   (  )   
    

 ∑  (  )

    

 
 
    ( )
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 [
   
 
(
 

    
    )]    (  ) 

Based on the derivation of Gill [4, chatter 3], it is clear 

that         √   . 

Then   
               
            

} 

From Figure 1, the value of bistatic angle will be 

changed in a different position of an elliptical patch, and 

the direction of ellipse normal also change belong to the 

area of patch scatter point. In this case, the direction of 

vector   (Fig. 2) along the outward ellipse normal, or 

      . When TX and RX are co-located, the value of 

the bistatic angle ( ) becomes to zero, then the bistatic 

case becomes the monostatic case. The size of scattering 

patch width (   ) will be determined from given the 

pulse duration (τ0) and the speed of light as           . 

By the feature of the Sampling function, Sa
2
(.), in (9), 

the major peak of the first-order cross section is located 

at     √        . It indicated that the position of 

the first-order peak dependent on the operating frequency 

value and the bistatic angle that will be changed 

following the position on the scattering ellipse, which is 

observed by TX and RX. In addition, the Sa
2
(.) factor 

presents a rapidly oscillating first order continuum and 

affects the shape of those peaks. However, the 

fluctuation of surface and noise effects make the signal 

varies as well as over time in the practical case. To 

provide a smoothing effect of this periodic behavior, 

there are some methods that could be applied such as 

Hamming window method [5], or Huang transform. The 

simulated result of the first order of bistatic radar cross 

sections will be discussed in section 4. 

 

    In order to calculate the Second-order bistatic cross 

section that was derived by Gill and Walsh [5], we first 

present the calculation of the    (  ) component that 

is the main contribution of the total second-order bistatic 

cross section [4], [5], [6]. This term represents the result 

of a single scatter from a second-order ocean wave and a 

double scatter from two first-order ocean waves which 

are near each other on the elliptical scattering patch. The 

calculation of the    (  ) is presented as (11):  
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The relationship, which was proposed by Lathi [11],    
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is applied to (15) when       , then 
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         (         )       (  ) 
 

Insert (17) into (15), and invoke the first delta function to 

do the dk integral, give: 
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      ∑ ∑ ∫ ∫  (    )
 

  

 

           
 

             (    )|    |
 
 

            (     √      √   )           

                                             (  ) 
It is clear that equation (18) is similar equation (2). The 

Doppler regions of the second-order are identical by the 

value of    and    in the delta function as: 

      √      √                                (  ) 
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Figure 2a. Normalised frequency contours in case 

      (the bistatic angle ϕ = 10
0
). 

 

Case 1:       

Then,   
            √                               (  ) 

From the triangle inequality in Fig 2, it showed that 

        and √       referring to (20), 

  
                

                                      (  ) 
gives       , or       

It indicated that 

                 
                 

}                                    (  ) 

 

     The frequency contour of this case is plotted in 

Figure 2a. It showed that these contours are the same 

with those in monostatic case [13] even with the 

existence of bistatic angle. There are singularities in the 

radar spectrum at Doppler frequencies |  |  √     

that is similar to the monostatic case. In Figure 2a, the 

dashed circle presents points which satisfy        , 

that is, the denominator in electromagnetic coupling 

coefficient is zero. It means the integral (18) has 

singularities will cause small peaks in the bistatic sea 

echo spectrum at the value of frequency [4],  

|  |  √  
(      )

     

 

                                    (  ) 

where, the frequency contours are tangential to the 

dashed circle. 

 
Figure 2b. Normalised frequency contours in case 

      (the bistatic angle ϕ = 10
0
). 

 

Case 2:       

Squaring (19) now gives the relationship 

Then,   
            √                               (  ) 

Proving in the same way as before, we have. 

  
                

                                          (  ) 
It means            

then, for k1 < k2 

                      
                     

}                       (   ) 

for k1 > k2 

                      
                     

}                         (   ) 

The frequency contours of this case are plotted in Figure 

2b. It shows that frequency contours are not tangential to 

the dashed circle, so the integrable singularity resulting 

from the electromagnetic term does not exist, and 

secondary peaks do not appear in the region between the 

Bragg lines of the second-order bistatic cross section. 

 

    To simulate the RCS of HF radar sea-echo, the 

double integration of the second-order of Doppler-Range 

spectra should be simplified as [4], [13]. In Figure 2a,b, 

the frequency contour is symmetrized via the P and Q 

axis of the P-Q plane. Therefore, we took the integral 

only the left plan (k1 < k2) and double the results (Figure 

2a,b). The value of second-order radar cross section will 

be computed with given value of the first ocean vector 

(  ), which satisfies the condition of delta function 

constraints in (15) and (18), and its direction (   ).  

From Figure 2a, the relationship between    and    is 

identical based on the law of cosines and sines in triangle 

as [4], 

   √  
             

                                          (  )           

          
  (

       
  

)                                         (  ) 
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where    ,     are the direction of vector    and    

in the coordinate P-Q respectively. From figure 1, 2, the 

direction of axis P must be the same with the direction of 

elliptical normal of scattering patch, or        in the 

coordinate Oxy.  

Thus, it is easy to simplify one of the integrations using 

the delta function constraint on the variables that were 

presented by Lipa and Barrick [13] for monostatic cross 

sections. The definition of new variables as follows: 

  √                                    (29) 

then,         
                          (30) 

and the delta function constrain is presented in form 

 ( )    (     (     ))                  (31) 

where, using (28), gives 

  
    (     )   [√ ( 

             
 )   ]

√  

                                         (32) 

Then, for a given      

   |
  

   
|
   

                                                         (  ) 

with the Jacobian of the transformation, using L = m1m2, 

give as 

|
  

   
|
   

 
 

√ [  
 (          )

(              
 )   

] 

                                         (34) 

Applying the transformation, (18) is written as 

   (  )   
     

      ∑ ∑ ∫ ∫  (    )
  

 

            
 

                  (    )|    |
 
 (     (     )) 

                
   |

  

   
|
   

                          (  ) 

It is clear that the limits on the DP integral could be 

defined from (31) which depends on the value of m1 and 

m2 under consideration that was illustrated in (22) and 

(24). In general, the delta function constraint is solved 

using numerical methods. It means 

 ( )       (     )                     (36) 

, and there exists a solution y = y
*
 such that  (  )   . 

Thus, (36) can be solved numerically using the 

Newton-Raphson method [4], [13]. In which, a suitable 

initial guess for the whole integral is defined as: 

   
   (       )

√ 
                                               (  )

 

The calculation of the symmetrised coupling coefficient is 

presented in (10) and (11). Finally, all of the features of the 

integral in (35) that are used to calculate the second-order 

“patch” cross section have presented.  

 

    Secondly, we mentioned about the features of the 

   (  ) term of the second-order bistatic cross section. 

As we explained before, this term represents the Doppler 

cross section component involving one scatter near Tx 

followed by another on the remote patch [4], [5]. 

Applying the same technique for the Sa
2
(.) function in 

(12), we have, 

   (  )   
     

      ∑ ∑ ∫ ∫  (    )
 

 

 

            
 

                        (    )|    |
 
 

                        (     √      √   ) 

                                                          (  ) 
where,     , it means the  (    ) is the spectrum 

of only two waves having wave length         and 

travelling inner and outer along the ellipse normal,     

is the electromagnetic coupling coefficient. For HF 

operating frequencies, ocean waves have wavelength 

        located at the end of the energy spectrum that 

makes the    (  ) which becomes less important as 

compared to the    (  ) [4].  

 

To calculate the value of the    (  ), we first define 

the Doppler Regions under the consideration of    and 

  . To satisfy the delta function in (38), it is required as: 

      √      √   

    √      √           (  ) 

insert     √        , and applying the same way as 

previous, we have [4], 

                      
                      
                     
                         

}                      (  )    
 

The new variable is defined as   √  , as previous, 

insert (30), gives 

 ( )    (     ( ))                       (41) 

Where  

  
    ( )     

√ 
                                                     (  )

 

the Jacobian of the transformation is 

|
  

   
|  

 

√ 
                                                                    (  )

 

Applying the transformation, (38) is written as 

   (  )   
     

      ∑ ∑ ∫ ∫  (    )
 

 

 

            
 

                         (           (
    

 
) )                     

                     |    |
 
 (     ( )) 

                                          
  

√ 
                            (  ) 

The solution, y
*
, is directly calculated from delta 

function as 

   
 (       )

  √ 
                                             (  )

 

The electromagnetic coupling coefficient in (38) is 

presented as follows [5]: 

    ,
   (      ̂ )

√   (       ̂ )
-

 

                    ,
   

      √   (       ̂ )

  
     (       ̂ )

-    (  ) 

where,  ̂  is the unit vector associated with vector    

in Figure 1. Gill [5] suggested that singularities occur in 
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    when    (       ̂ )   , and he found that the 

singularities will appear at the Doppler frequencies that 

are given from (39) [5].  

      √            {    
  

    
}  (  ) 

when         , these Doppler frequencies are 

   {    √    }  respectively. In contrast, 

      there are two peaks removed close to zero 

Doppler frequency by an amount which depends on the 

value of bistatic angle. Then, the    (  )  can be 

calculated from all of these features of integral (44) which 

have presented above. 

 

    Finally, we expressed the features of the last 

component, which is the    (  ), of the second-order 

bistatic cross section. Thus, this component represents 

the Doppler cross section component involving one 

scatter in remote patch followed by another one near Rx 

[4], [5]. We applied the same technique for the Sa
2
(.) 

function in (13), we have,  

   (  )   
     

      ∑ ∑ ∫ ∫  (    )
 

 

 

            
 

                        (    )|    |
 
 

                        (     √      √   ) 

                                                          (  ) 
where,    associated with the scatter on the remote 

patch, is fixed in magnitude and direction as    

        and       ⃗⃗  respectively. In contrast,    

that is linked to a wave of ocean surface near the receiver 

can assume any direction from –π to π. The magnitude of 

   can be determined based on the satisfaction of the 

delta function.      is the electromagnetic coupling 

coefficient near the receiver. As the same with 

   (  )   the    (  ) also becomes secondary 

importance as compared to the    (  ) [4]. 

From the delta function of (45), it is required as 

      √      √   

    √           √      (  ) 

Using     √        , and applying the same 

expression as before, we have [4], 

                      
                      
                     
                         

}                      (  )    
 

Letting a new variable   √  , and insert (30), gives 

 ( )    (     ( ))                      (51) 

Where  

  
    ( )     

√ 
                                                    (  )

 

The Jacobian of the transformation is presented as 

|
  

   
|  

 

√ 
                                                                    (  )

 

Then, (41) is written as: 
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                     |    |
 
 (     ( )) 

                                          
  

√ 
                            (  ) 

The solution, y
*
, is simply calculated from delta function 

as 

   
 (       )

  √ 
                                          (  )

 

The value of     in (48) is computed as [5]: 

    ,
      ̂ 

√   (       ̂ )
-                                  (  )

 

where,  ̂  is the unit vector associated with vector    

in Figure 1. According to the work of Gill [4], the circle 

of singularities correspond to the satisfaction of 

   (       ̂ )   , and he pointed out that these 

singularities occur at Doppler frequencies which are 

given from (49) [5].  

           √       {    
  

    
}   (  ) 

when         , these spectral peaks may be 

located at    {    √    }  respectively. For 

     , there are two more peaks removed near zero 

Doppler frequency by an amount that depends on     . 

It is clear that both    (  )  and    (  ) have 

theoretical peaks in the same location of Doppler 

frequency. Finally, the    (  ) is calculated from the 

integral in (54). 

 

    This section, we have presented the calculation of 

the bistatic cross section that was developed by Gill and 

Walsh [5]. In next section, we will discuss the 

dependence of Doppler spectra on such factors as the 

bistatic geometry parameters, wind condition and the 

operating radar frequency. 

 

4. Simulated results and Comparison 

  
     To prove the argument in section 3, we first do the 

sensitivity test to evaluate the effect of input parameters 

to simulated results of RSC. The JONSWAP spectrum 

and a cardioids directional factor are chosen to represent 

the ocean spectrum and spreading respectively.  

 ( )   ( ) (   )                                                     (  ) 
The JONSWAP spectrum is presented as: 

 ( )  
  

       
 ( )                                                  (  )  

Where S(f) is the one-dimension frequency spectra, is 

given [9], 

 ( )  
   

(  )   
   ( 

 

 
(
 

  
)
 

) 
   (

 (    )
 

     
 )

  (  ) 

In equation (60), fm is the peak frequency,   is the 

energy scale,   is the shape parameter, σ develops as 

the spectrum develop which depends on the aspect of 

fetch-limited spectra. The last part of (60) is the function 

of fetch and duration. In this study, we assumed the 
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parameter of JONSWAP spectrum that was taken in a 

fully developed limited as in [15]. 

 

    The cardioids directional distribution is chosen as 

Lipa and Barrick [13], and is presented, 

 (   )   
 

  
    (

     
 

)                                (  ) 

 

where    is the direction of vector   of sea waves, and 

   is the direction of wind. 

 

     According to the setup of the antenna array radar 

station in NCU coastal station at Yong-An, northwestern 

coast of Taiwan. It is assumed that distant between TX & 

RX is 2 km. As both TX  and RX will be installed along 

the coastline, the direction from the transmitter to the 

receiver is approximately 30
0
 to the North. the distance 

from the scattering point to TX and RX
 
are the same 

(           ). Let the radar operating frequency to 

be 25 MHz, and the pulse duration of 150 kHz, the patch 

width    = 1000 m. The simulation results are shown as 

follows. 

 

 
Figure 3. An example of the components of the bistatic 

cross section.  

 

     Figure 3 shows an example of the component of 

the bistatic cross section with given JONSWAP spectrum, 

U10 15 m/s, wind direction    of 30
0
. The value of the 

bistatic angle, ϕ, is approximately 6
0
. It is clear that the 

first-order cross section  (  )   in Gill and Walsh’s 

model is the continuum, and have contributed to the total 

value of RCS. It leads to some problems: the estimated 

directional spectrum from the second-order of RCS will 

be different to the target directional spectrum, and the 

width of the first-order peak, which due to the feature of 

the Sa
2
(.) function and the amount of patch width, may 

make it close and attached to the second-order 

component. Therefore, it could be difficult to determine 

the position and exact value of the second-order radar 

cross section. Fortunately, we can quantitatively evaluate 

the contribution of the  (  )   into the total RCS 

through simulated results. From Figure 3, we can see that 

there exists the integral singularities that contained in 

three second-order components at Doppler frequency as 

mentioned in (23), (47) and (57). In addition, it is easily 

seen that both    (  ) and    (  ) are much smaller 

than the value of    (  ) . Therefore, two last 

components in (8) may be neglected in the inverse work.  

 

 
Figure 4. An example of the comparison between the 

bistatic cross section and the monostatic cross section 

which were proposed by Gill and Walsh and Barrick 

respectively.  

 

    In Figure 4, the difference between the RCS of 

Barrick’s model and Gill & Walsh’s model is presented. 

In Barrick’s model, the first-order term was separated 

from the second-order term based on the delta function 

constraints. In Figure 4, we see that there is quite 

comparable between the left and the right parts of the 

bistatic cross section, but in monostatic case, the 

second-order cross session of left part is higher than the 

right part. It causes by the different direction of two 

scattering ellipse normal vectors which equal the value 

of bistatic angle. The integral singularities contained in 

the second-order of RCS located at different Doppler 

frequency following (23), (47), (57) and [12, page 16], 

except at Doppler frequency    √   . In addition, 

the value of RCS of Barrick’s model is lower than those 

of Gill & Walsh model, because of the presence of Sa
2
(.) 

function and patch width in (7), (9), (12) and (13).  

 

    Figure 5 shows the effect of different input of wind 

direction to the value of RCS in the bistatic case. The 

equivalence between the RSC of the positive part or 

negative of Doppler frequency depends on the angle 

between wind direction and the direction of scattering 

ellipse normal vector. Because of the symmetry, the RCS 
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in negative part will be bigger than those of positive part 

if the angle is in a range of [-90
0
 ~ 90

0
]. In contrast, the 

RCS in positive part will be bigger than those of negative 

part when the absolute value of this angle larger than 90
0
. 

For the example in figure 5, the direction of the normal 

vector of scattering ellipse is 300
0
 in compared with the 

north direction. 

 

 
Figure 5. An example of the comparison of the bistatic 

cross section with the different input value of wind 

direction. 

 

     The effect of different given wind speeds to the 

value of RCS in the bistatic case is shown in Figure 6. It 

is clear that the value of RCS increases in general and 

significant around the second-order peaks that 

correspond to the increase of wind speed. Because wind 

speed is a very important parameter in spectrum model 

that contribute to the value of the second-order of RCS. 

This trend is similar those of the monostatic case. 

 

Figure 6. An example of the comparison of the bistatic 

cross section with the different input value of wind speed. 

 

5. Conclusion 
    Based on the work of Barrick [1], [2], Gill and 

Walsh [5], the radar cross section of two model are 

conducted and compared. The first-order of the bistatic 

cross section is the continuum, and depends on the finite 

width of the signal pulse, which shows the difference in 

compared with the earlier model. The second-order of 

the bistatic cross section in Gill and Walsh’s approach 

was added possible scattering terms near transmitter and 

receiver antennas, which neglected in the earlier 

monostatic version. In addition, the first-order terms 

could be added into the regions of the second-order term 

in practical. That can lead to the estimated directional 

spectrum from the second-order cross section may be 

different with given directional spectrum of input step. 

However, we can quantitatively the contribution of the 

first-order components through the sensitivity test of 

simulation work. 

 

    The effect of different input parameters of wind 

speed and wind direction is evaluated through simulation 

results. The change of RSC in the bistatic case is similar 

with those of the monostatic case. 

 

    In this study, we have done the simulation work of 

the radar cross section of HFR sea-echo. Besides that, the 

simulation work will be helpful for the inverse problem. 

In future work, the inversion algorithm will be 

implemented to retrieve the directional wave spectrum 

from the simulated Doppler spectral. 

      c    
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